similar resources
the structure of lie derivations on c*-algebras
نشان می دهیم که هر اشتقاق لی روی یک c^*-جبر به شکل استاندارد است، یعنی می تواند به طور یکتا به مجموع یک اشتقاق لی و یک اثر مرکز مقدار تجزیه شود. کلمات کلیدی: اشتقاق، اشتقاق لی، c^*-جبر.
15 صفحه اولSome Remarks on Producing Hopf Algebras
We report some observations concerning two well-known approaches to construction of quantum groups. Thus, starting from a bialgebra of inhomogeneous type and imposing quadratic, cubic or quartic commutation relations on a subset of its generators we come, in each case, to a q-deformed universal enveloping algebra of a certain simple Lie algebra. An interesting correlation between the order of i...
full textOn the cyclic Homology of multiplier Hopf algebras
In this paper, we will study the theory of cyclic homology for regular multiplier Hopf algebras. We associate a cyclic module to a triple $(mathcal{R},mathcal{H},mathcal{X})$ consisting of a regular multiplier Hopf algebra $mathcal{H}$, a left $mathcal{H}$-comodule algebra $mathcal{R}$, and a unital left $mathcal{H}$-module $mathcal{X}$ which is also a unital algebra. First, we construct a para...
full textSome Applications of Frobenius Algebras to Hopf Algebras
This expository article presents a unified ring theoretic approach, based on the theory of Frobenius algebras, to a variety of results on Hopf algebras. These include a theorem of S. Zhu on the degrees of irreducible representations, the so-called class equation, the determination of the semisimplicity locus of the Grothendieck ring, the spectrum of the adjoint class and a non-vanishing result ...
full textNOTES ON REGULAR MULTIPLIER HOPF ALGEBRAS
In this paper, we associate canonically a precyclic mod- ule to a regular multiplier Hopf algebra endowed with a group-like projection and a modular pair in involution satisfying certain con- dition
full textMy Resources
Save resource for easier access later
Journal title:
bulletin of the iranian mathematical societyPublisher: iranian mathematical society (ims)
ISSN 1017-060X
volume 30
issue No. 1 2011
Keywords
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023